欢迎访问 2138CC太阳集团
当前位置: 首页 » 师资队伍 » 讲师 » 李楠
  • 李楠
  • 最终学位:博士
  • 电子邮箱:linan10@sxu.edu.cn
  • 导师类型:
  • 联系电话:0351-7010566
  • 所在院所:大数据科学与产业研究院
  • 研究方向:神经架构搜索、性能预测器、演化计算、特征选择
  • 个人简介
  • 发表论文
  • 科研项目

李楠,博士,入选首届中国科协青年人才托举工程博士生专项计划。目前已在ACM CSUR (IF: 28.06),IJCAI,IEEE TEVC, IEEE TFS, IEEE TCYB等知名期刊及会议上发表论文20篇(含ESI高被引4篇,热点论文1篇,研究前沿3篇),Google引用500余次。担任30多个SCI/EI审稿人,其中包括20本中科院一区期刊以及3个国际会议的PC/TPC reviewer。此外,作为Session/Workshop Chair在多个国际会议上组织与演化架构搜索相关的专题。

[1] Li N, Ma L, Yu G, Xue B, et al. Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues[J]. ACM Computing Surveys, 2024, 56(2): 1-34. (IF: 28.06, SCI一区Top, ESI高被引/研究前沿)

[2] Li N, Xue B, Ma L, et al. Transferable Relativistic Predictor: Mitigating Cross-Task Cold-Start Issue in NAS[C]. International Joint Conference on Artificial Intelligence, 2025. (CCF-A类会议)

[3] Li N, Xue B, Ma L, et al. Automatic Fuzzy Architecture Design for Defect Detection via Classifier-assisted Multiobjective Optimization Approach[J]. IEEE Transactions on Evolutionary Computation, 2024. (CAAI-A, SCI一区Top)

[4] Li N, Ma L, Xue B, Zhang M, et al. Listwise Ranking Predictor for Evolutionary Neural Architecture Search[J]. Swarm and Evolutionary Computation, 2025. (SCI一区)

[5] Li N, Ma L, Xing T, et al. Automatic design of machine learning via evolutionary computation: A survey[J]. Applied Soft Computing, 2023: 110412. (SCI一区Top)

[6] Ma L, Li N*, et al. A Novel Fuzzy Neural Network Architecture Search Framework for Defect Recognition with Uncertainties[J]IEEE Transactions on Fuzzy Systems, 2024, doi: 10.1109/TFUZZ. 2024.3373792. (SCI一区Top)

[7] 李楠, 贺美蕊, 马连博. 进化深度学习的研究现状与进展[J]. 信息与控制, 2024, 53(02): 129-153. (EI期刊, 入选科技期刊双语传播工程)

[8] Li N, Ma L, Zhang T, et al. Multi-objective Evolutionary Ensemble Learning for Disease Classification[C]//International Conference on Swarm Intelligence. Cham: Springer International Publishing, 2022: 491-500. (EI会议)

[9] Ma L, Li N, Yu G, et al. Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search[J]. IEEE Transactions on Evolutionary Computation, 2023. (SCI一区Top, ESI高被引/热点/研究前沿)

[10] Ma L, Li N, Guo Y, et al. Learning to Optimize: Reference Vector Reinforcement Learning Adaption to Constrained Many-Objective Optimization of Industrial Copper Burdening System[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 12698-12711. (SCI一区Top, ESI高被引/研究前沿)

[11] 马连博, 李楠, 程适. 进化神经网络原理, 模型及方法综述[J]. 陕西师范大学学报 (自然科学版), 2021, 49(05): 30-38+133. DOI: 10.15983/j.cnki.jsnu.2021, 01: 022.(中文核心, 获卓越论文奖)

[12] Tian Zhang, Lianbo Ma, Shi Cheng, Yikai Liu, Nan Li Automatic Prompt Design via Particle Swarm Optimization Driven LLM for Efficient Medical Information Extraction[J]. Swarm and Evolutionary Computation. (SCI一区Top)

[13] Guo L, Li N, Zhang T. EEG-based emotion recognition via improved evolutionary convolutional neural network[J]. International Journal of Bio-Inspired Computation, 2024, 23(4): 203-213. (CAA-A期刊)

[14] Zhang T, Li N, Zhou Y, et al. Information extraction of Chinese medical electronic records via evolutionary neural architecture search[C]//2023 IEEE International Conference on Data Mining. IEEE, 2023: 396-405. (CCF-B会议)

[15] Zhang T, Li N, et al. Neural Architecture Search Based on Brain Storm Optimization Algorithm for Face Detection[C]//International Joint Conference on Neural Networks 2024 (CCF-C会议)

[16] Mei A. , Li N, et al. Evolutionary Graph Fusion Architecture Search[C]//IEEE Congress on Evolutionary Computation 2025 (CAAI-C会议)

[17] Zhang T, Ma L, Liu Q, Li N, et al. Genetic programming for ensemble learning in face recognition[C]//International Conference on Swarm Intelligence. Cham: Springer International Publishing, 2022: 209-218. (EI会议)

[18] Liu Y, Xing T, Li N, et al. A Large-Scale Multi-objective Brain Storm Optimization Algorithm Based on Direction Vectors and Variance Analysis[C]//International Conference on Swarm Intelligence. Cham: Springer Nature Switzerland, 2023: 413-424. (EI会议)

[19] An X, Ma L, Li N, et al. Neural Architecture Search Based on Improved Brain Storm Optimization Algorithm[C]//International Conference on Swarm Intelligence. Cham: Springer Nature Switzerland, 2023: 334-344. (EI会议)

[20] Kang H, Li N, et al. When NAS Meets Anomaly Detection: In Search of Resource-Efficient Architectures in Surveillance Video[C]//International Joint Conference on Neural Networks, 2024 (CCF-C会议)

中国科协青年人才托举工程博士生专项计划(主持)